

Assistant Lecturer

University.of Basra - College of Dentistry - Department of Basic Sciences
MSc. Medicinal Biochemistry from Malaysian National University (UKM) - Malaysia
Email:- hazim.saad@uobasrah.edu.iq and hazzmrn@yahoecom

QUANIDBATHVE

VOLUMIEHRTC

ANALISIS

CONTENTS:-

INTRODUCTION

What is the meaning of Titration?

3 A reagent, A primary standard solution and Types of titrations

4 Acid-base, Precipitation, Redox and Complexometric titration

Calibration of Hydrochloric Acid

INTRODUCTION

Volumetric analysis

Volumetric analysis is a general term for a method in quantitative chemical analysis in which the amount of a substance is determined by the measurement of the volume that the substance occupies. It is commonly used to determine the unknown concentration of a known reactant. Volumetric analysis is often referred to as titration.

What is the meaning of Titration?

Titration is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of a known reactant. Because volume measurements play a key role in titration, it is also known as volumetric analysis.

A reagent, called the titrant or titrator,[1] of a known concentration (a standard solution) and volume is used to react with a solution of the analyte or titrant,[2] whose concentration is not known. Using a calibrated burette or chemistry pipetting syringe to add the titrant.

A primary standard solution is a highly purified compound that serve as a reference material in all volumetric titrimetric methods.

Types of titrations

1- Acid-base titration
2- Precipitation titration
3-Redox titration
4- Complexometric titration

Calculations of volumetric analysis

Standard solution is one, which contains a known weight of the reagent in a definite volume of the solution.

Molar solution is one, which contains 1 gm molecular weight of the reagent per liter of solution.

$$
\mathrm{M}=\frac{\text { Weight }}{\mathrm{M} \cdot \mathrm{Wt}} * \frac{1000}{\text { Volume }(\mathrm{mL})}
$$

Normal solution is one that contains 1gm equivalent weight per liter of solution.

$$
\mathrm{N}=\frac{\text { Weight }}{\text { eq. } \mathrm{wt}} * \frac{1000}{\text { Volume }(\mathrm{mL})}
$$

Equivalent weights

(1) Equivalent weight in neutralization reactions.

The equivalent weight of acid is that weight of it which contains one-gram atom of replaceable hydrogen.

Ex: equivalent weight of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ M.Wt $\mathrm{H}_{2} \mathrm{SO}_{4} / 2$ equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{M} . \mathrm{Wt} \mathrm{H}_{3} \mathrm{PO}_{4} / 3$

$$
\text { eq.wt acid }=\frac{\text { M.Wt acid }}{\text { No. of active } \mathrm{H}^{+}}
$$

The equivalent weight of Base is that weight of it which contains one replaceable hydroxyl group.

Ex: equivalent weight of $\mathbf{N a O H}=\mathbf{M} . W t \mathrm{NaOH} / 1$

Experiment (5) Calibration of Hydrochloric Acid

 A. Preparation hydrochloric acid solution (0.1 N):-1-Calculate the normality of the concentrated HCl :$$
\mathrm{N} 1=\frac{\mathrm{SP} . * \mathrm{Wt.} \% * 1000}{\text { Eq. Wt. }}
$$

Where :-
N1 = hydrochloric acid calibration Centre
Sp. = Specific weight of acid (acid density)
Wt. \% = The percentage of the weight of hydrochloric acid Center

$$
\mathrm{N}=\frac{1.19 *(37 / 100) * 1000}{36.5}=12.0630
$$

2 - To prepare $(500 \mathrm{~mL})$ of 0.1 N HCl

Preparation titrated hydroch oric acid $\mathbf{N}_{\mathbf{2}}=\mathbf{0 . 1}$) and sive $\left(\mathbf{V}_{\mathbf{2}}=\mathbf{5 0 0} \mathbf{M L}\right)$ Use the following formula to calculate the size of the acid Centre $\left(\mathbf{V}_{\mathbf{1}}\right)$ which we take to prepare the acid diluted:

$$
\begin{align*}
& \begin{array}{l}
\mathrm{N}_{1} * \mathrm{~V}_{1}=\mathrm{N}_{2} * \mathrm{~V}_{2} \\
\text { conc. } \mathrm{HCl} \text { dil. } \mathrm{HCl}
\end{array} \\
& \mathrm{~V}_{1}=\frac{\mathrm{N}_{2} * \mathrm{~V}_{2}}{\mathrm{~N}_{1}}
\end{align*}
$$

$$
\begin{array}{r}
12.0630 \times \mathrm{V}_{1}=500 \times 0.1 \\
\mathrm{~V}_{1}=4.1449 \mathrm{~mL}
\end{array}
$$

B: Preparation of $(0.1 \mathrm{~N})$ sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$:

To calculate the weight of sodium carbonate needed to prepare a titration solution (0.1), the following equation is used:

:O:

Equipment:-

1) burette of 50 ml . 2) 10 ml pipette. 3) 500ML Beaker. 4) 500 ML volumetric vial, 250 ML volumetric flask and conical flask. 5) funnel. 6) Spatule. 7) cylinder.

Procedure: -

A. Standardization of $\mathbf{H C l}$ solution with standard solution of $\mathbf{N a}_{2} \mathbf{C O}_{\mathbf{3}}$

1-Clean the burette and rinse with HCl solution.
2-Fill the burette with HCl .
3-Pipet 10 ml of standard solution $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ into a 250 mL conical flask. Add 3 drops of Methyl orange indicator.

4-Titrate by adding HCl drop wise until the solution just beings to change from yellow to red.
5-Reapeat the titration a few times until you get approximate results. Take the average of the results and subtract 0.05 mL . (This result represents the volume of extra drop which change the color of indicator.

6-Calculate the normality of HCl :

$$
\mathbf{N}_{\text {acid }} \times \mathbf{V}_{\text {acid }}=\mathbf{N}_{\text {base }} \times \mathbf{V}_{\text {base }}
$$

7-Make label on your bottle containing your name, date of preparation and concentration of acid after standardization.

8 - The equation of reaction
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{NaCl}$

A Presentation On Precipitation Titration

B. Analysis of sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$

1-Clean the burette and rinse with standardized HCl solution and then fill it with the acid.
2-Pipet 10 ml unknown solution $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ into a 250 mL conical flask. Add 2 drops of phenolphthalein indicator the solution will be pink.

3-Titrate by adding HCl drop wise until the solution just beings to change its color from pink to colorless this data will be $\left(\mathrm{V}_{1}\right)$.

4- Add 1-2 drops of Methyl orange indicator to the above solution which became yellow then complete the titration until the color of the solution became pale orange (onion), this data will be $\left(V_{2}\right)$.

5-Reapeat the titration a twice time until you gets approximate results. Take the average of the results and subtract 0.05 mL . (This result represents the volume of extra drop which change the color of indicator.

6- Make a table as bellow: -

Sq		First titration	Second titration	Third titration	Average of titrations
1	Titration with ph.ph	V 1	V 1	V 1	V 1 (av.)
2	Titration with M.O	V 2	V 2	V 2	V 2 (av.)

$V 1(\mathbf{a v})=.\frac{V 1+V 1+V 1}{3}$
$\mathrm{V} 1(\mathrm{av})=.1 / 2 \mathrm{CO}_{3}=$
$\mathrm{V} 2(\mathrm{av})=.1 / 2 \mathrm{CO}_{3}{ }^{-}$
$\mathrm{V} 1+\mathrm{V} 2=\mathrm{V}_{\text {tot. }}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$\mathbf{N}_{\text {acid }} \times \mathbf{V}_{\text {(tot.) acid (from burette) }}=\mathbf{N}_{\text {base }} \times \mathbf{V}_{\text {base }}$
7- The equation of reaction :
$\underset{\substack{\text { Pink }}}{\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}} \xrightarrow[\substack{\text { ph.ph } \\ \text { colorless }}]{\mathrm{NaHCO}_{3}+\mathrm{NaCl}}$
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \xrightarrow{\mathrm{M.O}} \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaCl}$ Yellow
pale orange

Methyl Orange Indicator

Acidic pH

Red - Orange

Neutral pH

Yellow

Alkaline pH

Yellow

Methyl Orange 0.05\%

 DANGERarture \qquad

Phenolphthaleirnindicator

Orange

Colorless

Pink

Colorless

